

We Can't Keep Doing the Same Things & Expect Different Results

Safe Systems

Abolfazl Karimpour, Ph.D.

Research Assistant Professor

Dept. of Civil & Architectural Engineering & Mechanics

Manager of Center for Applied Transportation Sciences (CATS)

Elliott Daimler

Data and Program Specialist

Traffic Safety Research and Evaluation Group,

University of Georgia

Eric Chaney MS, MBA, NREMT

Emergency Medical Services Specialist

National Highway Traffic Safety Administration

March 15th, 2022

Center for Applied Transportation Sciences (CATS) College of Engineering

Agenda

- Safe System Overview
- Data Talks
 - Nationwide
 - Georgia
 - Arizona

Speed Management Strategies

- Introduction
- Overview
- Solutions

O/A

- Case Study
- Post Crash Care

• EMS/Response time

Safe System Overview

Introduction

Safe System

Introduction Traditional VS Safe System

Rather than focusing on changing human behavior and preventing all crashes, the Safe System approach refocuses transportation system design and operation on anticipating human errors and reducing impact forces to reduce crash severity and save lives.

Data Talks

Changes in Driving Behavior

Contributing factors including driving too fast for conditions, driving under the influence, and reckless driving are experiencing upward trends

- Vehicle miles traveled decreased Georgia in 2020
- Trends in these contributing factors continued to increase
- Serious injuries and fatalities rose in 2020, 2021

Data Talks Case Study: State of Georgia

Collisions

Date

Figure 3: Georgia Total Collisions, 2014-2021

THE UNIVERSITY OF ARIZONA.

Collisions

Figure 2: Georgia Reckless Driving Collisions per 100 VMT, Jan. 2018 - Sep. 2021

Collisions

Figure 1: Georgia Speeding Collisions per 100 VMT, Jan. 2018 - Sep. 2021

Injuries

Figure 5: Georgia Total Injured, 2014-2021

Serious Injuries Criteria

Case I

 Injury Status is either Suspected Serious Injury OR (Suspected Minor/ Visible Injury AND Unit was transported) AND Person type is Pedestrian OR Vehicle Type is Pedalcycle, Bicycle

Case 2

Injury Status is Suspected Serious Injury AND Unit was Transported

Case 3

Injury Status is Suspected Minor/Visible Injury AND Unit was transported AND Damage to Vehicle is either Disabling Damage

Date

Figure 2: All Reckless Injuries, Jan - Dec

Figure 2: All Reckless Injuries, Jan - Dec

THE UNIVERSITY OF ARIZONA.

Figure 8: Reckless Driving Serious Injuries, Jan - Dec

THE UNIVERSITY OF ARIZONA.

Figure 9: Too Fast for Conditions Serious Injuries, Jan - Dec

Fatalities

Figure 4: Georgia Total Fatalities, 2014-2021

Data Talks Case Study: State of Arizona

OF ARIZONA.

Collisions

Data source: Arizona Crash Information System

Speeding VS Severity

2018 Speeding-Related Crash Data-Tucson

Total Crash	2,955
Fatal	19
Serious Injury	87
Minor Injury	960
PDO	1889

Speed Management Strategies

Problem Statement: Speeding

NHTSA The HIGHWAY DEFICE SAFETY ADMINISTRATION Introduction Speeding VS Severity

Source: FHWA

Typical Stopping Distances

Source: https://www.wri.org/blog/2017/05/need-safe-speed-4-surprising-ways-slower-driving-creates-better-cities

Effective Speed Management Strategies

What are the primary outcomes of an effective speed management strategy?

Improve mobility and vehicle progression by:

- ✓ Reducing nonrecurrent delays
- ✓ Reducing incident-induced delays

Improve public health and traffic safety by:

- ✓ Reducing the number of speeding-related crashes
- ✓ Reducing average speed
- ✓ Increasing speed limit compliance

(NHTSA, 2014; NHTSA, 2017)

	Υ
Engineering	Enforcement

Engineering: Roadway Design (FHWA 2014)

Countermeasure	Road Environment	
Speed Table	I- Small town	
Transverse Rumble Strips	I - Posted Speed Limit=70mph 2- High-speed intersections	
Converging Chevron Marking	I- Main Roads	
Transverse Markings	I- Horizontal Curves	
	2- Interstate Work Zone	
Speed humps	I- Local roadways	
	I- Main roads	
Optical Speed Bars	2- Freeway Curves	
Speed Limit Pavement Legend	I- Main roads	
"Slow" Pavement Legend	I- Main roads	

Speed humps

Cons:

• Not applicable to all type of roadways

Engineering: Speed Feedback Sign

School zone

- Texas (G. Ullman & Rose, 2005) => Avg. Speed reduced by 9 mph
- South Korea (Lee et al., 2006) => Avg. Speed reduced by 17.5%

• Work zone

US, Interstate 80 (Pesti & McCoy, 2001;) => Avg. Speed reduced by 5 mph

Transition areas

New Zealand (Wrapson et al., 2006) => Avg. Speed reduced by 6 mph

Urban and rural road

- London (Walter & Broughton, 2011) => Avg. Speed significantly reduced
- Wisconsin (Santiago-Chaparro, 2012)

Cons:

• Spatial Halo Effect 27

Enforcement: Law Enforcement

- Reduced aggressive and risky driving
 - United Kingdom (Stanojević et al., 2018)

Reduce both mean speeds and variance in speed

London (Elliott and Broughton, 2005; Walter et al, 2011)

Target the fatal crash

Queensland, Australia (Newstead, 2004)

Increase seat belt use

London and Saudi Arabia (Bendak S, 2005; Stanojevic et al., 2012)

Cons:

• Continuous enforcement is costly

Roadway Design are not Always Applicable

Continuous Enforcement is Costly

Spatial Halo Effect (Fixed-point)

Speed Enforcement Cameras are not legal in all states

Potential Solution

Methodology:

ARIZONA.

• Developed a cross-sectional study design

Before and after study for strategy evaluation and comparison
Halo Effect Exploration

• Mixed Robust ANOVA test

THE UNIVERSITY OF ARIZONA.

Post-Crash Care

Post-Crash Care

- The Safe System Approach combined with a focus on redundancy, means that our responsibility does not end when a crash occurs.
- Caring for people injured in a crash to prevent their injuries from becoming fatal is just as critical.

Timing is critical!

The National EMS Information System

The National EMS Information System provides standardized EMS documentation and data collection practices to facilitate the sharing of EMS data with local, state and national organizations.

COLLECT – CLEAN – STORE – SHARE

Core Components of NEMSIS

- Documentation standard for EMS response and care
- Data definitions for point of care data collection
- **Compliance testing** for EMS ePCR software
- Interoperability and exchange standards
- National EMS Database

Participating States/Territories

State Participation and Submissions

THE UNIVERSITY OF ARIZONA.

Count of All EMS Activations

MVC Rates by Year

MVC Patient Characteristics

Date Range: January 01, 2020 – December 31, 2021

A.		
THE UNIVERSITY OF ARIZONA.		

	Gen	der
Age Range	Female	Male
0-4 Years	0.2%	0.2%
5-9 Years	0.0%	0.0%
10-14 Years	3.3%	3.5%
15-19 Years	5.1%	4.8%
20-24 Years	6.2%	6.2%
25-29 Years	5.2%	5.6%
30-34 Years	4.5%	5.2%
35-39 Years	3.8%	4.3%
40-44 Years	3.3%	3.7%
45-49 Years	2.9%	3.2%
50-54 Years	2.9%	3.3%
55-59 Years	2.8%	3.3%
60-64 Years	2.4%	2.8%
65-69 Years	1.9%	2.0%
70-74 Years	1.5%	1.5%
75-79 Years	1.0%	0.9%
80-84 Years	0.6%	0.6%
85-89 Years	0.3%	0.3%
0-94 Years	0.1%	0.1%
95-99 Years	0.0%	0.0%
100+ Years	0.0%	0.0%
Unknown	0.1%	0.1%

MVC Severely Injured Patients

MVC Probability of Survival >36%

Defining Severe Injury using NEMSIS

Need for time- sensitive care	Need for Critical Trauma Care	Probability of Patient Survival
Transport from the scene using Lights and Sirens	Transport to a Level-1 or Level-2 Trauma Center	Based on Patient's vital signs
Provider assessment of Final Patient Acuity = "Critical" or "Emergent"		Revised Trauma Score (RTS) translated to a probability of survival

MVC v. Pedestrian Injury Rates

MVC Ejections

Ejections by Age and Sex

Trauma Center Criteria: Survival Probability

Table of Trauma Center Criteria

Injury Risk Factors (AII)

Trauma Center Injury Risk Factors

2019

Table of Risk Factors

Includes all types of MVC-related injuries.

2018

Demonstrates changes in risk factors that help to inform severity and Trauma Center Criteria.

Ŧ

OF ARIZONA.

Comparing Fatalities and Injuries: Motor Vehicle vs. Pedestrian

2018 & 2019 Motor Vehicle vs. Pedestrian Fatalities and Injuries

Comparing Fatalities and Injuries: Motor Vehicle vs. Motorcycle

2018 & 2019 Motor Vehicle vs. Motorcycle Fatalities and Injuries

Comparing Fatalities and Injuries: Motor Vehicle vs. Bicyclist

2018 & 2019 Motor Vehicle vs. Bicyclist Fatalities and Injuries

Conclusion

Abolfazl karimpour, Ph.D.

karimpour@email.arizona.edu

Elliott Daimler Elliott.Daimler@uga.edu

Eric Chaney MS, MBA, NREMT eric.chaney@dot.gov

Thank you! Questions?

the UNIVERSITY OF ARIZONA COLLEGE OF ENGINEERING Center for Applied Transportation Sciences

