Evaluation of a Bus-Based Pedestrian and Bicyclist Collision Warning System: Mobileye Shield+

Shawn Turner, P.E.
Texas A&M Transportation Institute

2018 Lifesavers Conference
San Antonio, Texas, April 23, 2018
Overview

• What’s the problem?
• Mobileye Shield+ system
• Texas A&M pilot test and evaluation
 • Evaluation protocol
 • Results: Detection accuracy
 • Results: Bus driver feedback
 • Results: Hot spot map for collision alerts
What’s the problem?

• Need to improve pedestrian and bicyclist safety near buses
 • Large blind spots (especially when turning)
 • Operate in space-confined urban environments
 • Lots of street-side activity
 • Pedestrians in crosswalks or standing at intersection corners
 • Bicyclists in bike lanes or shared traffic lanes
Mobileye Shield+

• Pedestrian and bicyclist detection based on 4 cameras and machine vision
Mobileye Shield+

• Easily retrofit on existing buses
• Does not require DSRC with peds/cyclists
• Provides visual and auditory warnings

Source: Mobileye
Texas A&M Pilot Test and Evaluation

• Install on busiest bus route through central campus
• 6-week pilot test, 4-week follow-up
• Evaluate accuracy of detection system
• Interview drivers for qualitative feedback
Detection Accuracy

• Manually reviewed archived video
• Estimated proximity of peds/cyclists to bus
• Calculated false alarm rate
Driver Feedback

- Interviewed 10 drivers
 - Overall effectiveness
 - System detection accuracy
 - Visual warnings
 - Auditory warnings
 - System improvements
Results: Detection Accuracy

- 0% false alarm rate for initial pilot
- 37 collision alerts in 27 operating days

<table>
<thead>
<tr>
<th>Road User</th>
<th>Number of Collision Alerts by Proximity to Shield+ Bus</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-5 feet</td>
<td>5-10 feet</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Bicyclist</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Skateboarder</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Motorcyclist</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>FALSE ALARMS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: Detection Accuracy

• 10% false alarm rate for follow-up
• 40 collision alerts, 4 were false alarms

<table>
<thead>
<tr>
<th>Road User</th>
<th>Number of Collision Alerts by Proximity to Shield+ Bus</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-5 feet</td>
<td>5-10 feet</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Bicyclist</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>FALSE ALARM</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Results: Driver Feedback

• Most liked the system, thought it was effective and gave helpful reminders
• A few experienced drivers questioned its value: “it never warned me of something that I hadn’t already seen”
• Most drivers wished that the system could operate in low light (it does not), when their vision is challenged
• Mixed opinions about whether the collision warnings gave drivers enough time to react
Results: Hot Spot Map
Acknowledgments

• Project Partners
 • Transportation Services, Texas A&M University
 • Mobileye and Rosco Vision Systems

• TTI Team Members
 • Pete Koeneman
 • Katie Turnbull
Does technology PREVENT or CAUSE pedestrian and bicyclist injuries?

Yes to both
Please use the Lifesavers Conference Mobile App to evaluate this presentation.