Good, Better, Best: What about rear impacts and other seating positions?

Julie Mansfield, MS
April 24, 2018

Lifesavers 2018
Session: Good, Better, Best: Laws, Best Practice & Car Seat Instructions
Rear-facing CRS in rear impacts
Rear-facing orientation is safest for children under two years of age.

Studied extensively for frontal and side impact.

What about when crash forces are reversed in a rear impact?
- Child is now facing the direction of impact.
Objective 1:
Literature Review
• Jakobsson et al. 2005: Volvo crash database
 - Includes 454 children in rear-facing CRS
• Jakobsson et al. 2005: Volvo crash database
 – Includes 454 children in rear-facing CRS

No rear-facing children suffered injuries more than AIS 1 in side or rear impacts!
Literature: Children

• Jakobsson et al. 2005: Volvo crash database
 – Includes 454 children in rear-facing CRS

No rear-facing children suffered injuries more than AIS 1 in side or rear impacts!

“The rearward-facing child seats are designed primarily for frontal impacts, however the outcome for side and rear-end impacts indicates a good performance also in these situations.”

--Jakobsson et al. 2005
Langwieder et al. 1999: Institute for Vehicle Safety (IFV) study in Germany. Small sample size of 42 rear-facing children.

<table>
<thead>
<tr>
<th></th>
<th>Front</th>
<th>Side</th>
<th>Rear</th>
<th>Rollover</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>MAIS 0</td>
<td>15</td>
<td>62.5</td>
<td>4</td>
<td>66.7</td>
<td>8</td>
</tr>
<tr>
<td>MAIS 1</td>
<td>5</td>
<td>20.8</td>
<td>1</td>
<td>16.6</td>
<td>1</td>
</tr>
<tr>
<td>MAIS 2</td>
<td>3</td>
<td>12.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MAIS 3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MAIS 4/5</td>
<td>1</td>
<td>4.2</td>
<td>1</td>
<td>16.6</td>
<td>-</td>
</tr>
<tr>
<td>MAIS 6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>total</td>
<td>24</td>
<td>100</td>
<td>6</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>MAIS 2+</td>
<td>4</td>
<td>16.7</td>
<td>1</td>
<td>16.6</td>
<td>-</td>
</tr>
</tbody>
</table>
Langwieder et al. 1999: Institute for Vehicle Safety (IFV) study in Germany. Small sample size of 42 rear-facing children.

```
<table>
<thead>
<tr>
<th></th>
<th>Front</th>
<th></th>
<th>Side</th>
<th></th>
<th>Rear</th>
<th></th>
<th>Rollover</th>
<th></th>
<th>total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>MAIS 0</td>
<td>15</td>
<td>62.5</td>
<td>4</td>
<td>66.7</td>
<td>8</td>
<td>88.9</td>
<td>-</td>
<td>-</td>
<td>27</td>
<td>64.3</td>
</tr>
<tr>
<td>MAIS 1</td>
<td>5</td>
<td>20.8</td>
<td>1</td>
<td>16.6</td>
<td>1</td>
<td>11.1</td>
<td>1</td>
<td>33.3</td>
<td>8</td>
<td>19.0</td>
</tr>
<tr>
<td>MAIS 2</td>
<td>3</td>
<td>12.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>66.7</td>
<td>5</td>
<td>11.9</td>
</tr>
<tr>
<td>MAIS 3</td>
<td>-</td>
</tr>
<tr>
<td>MAIS 4</td>
<td>1</td>
<td>4.2</td>
<td>1</td>
<td>16.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MAIS 6</td>
<td>-</td>
</tr>
<tr>
<td>total</td>
<td>24</td>
<td>100</td>
<td>6</td>
<td>100</td>
<td>9</td>
<td>100</td>
<td>3</td>
<td>100</td>
<td>42</td>
<td>100</td>
</tr>
<tr>
<td>MAIS 2+</td>
<td>4</td>
<td>16.7</td>
<td>1</td>
<td>16.6</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>66.7</td>
<td>7</td>
<td>16.7</td>
</tr>
</tbody>
</table>
```

“Hence, rearward facing infant carriers have a low risk of injury in rear-end collisions.”

--Langwieder et al. 1999
• Rear impacts appear to be low risk for children, even those in RF CRS.
• However, sample sizes for children are small.
Objective 2: Sled testing
Sled testing

Sedan seat

Four CRS models
Target:
ECE R44 corridor (UNECE, 2014) (European standard)

Actual:
Peak velocity: 18.4 ± 0.1 mph
Peak g’s: 17.5 ± 0.1 g

~80th percentile in terms of rear impact severity
Handle stowed
Handle upright
Sled testing

Handle stowed with anti-rebound bar
Sled testing

Handle stowed
Handle upright
Anti-rebound bar

Lowest neck loads
(tension and compression)

All trials for this CRS:
Low Head Injury Criteria (HIC15) near 32-38 (injury threshold is 389 (Mertz et al. 2016))
Chest acceleration near 31-32 g (injury threshold is 60 g (NHTSA, 2011))
Sled testing

12-month-old (CRABI)
Sled testing

3-year-old (Hybrid III)
12-month-old

Higher neck compression, flexion moment, and extension moment (but still below injury thresholds)

3-year-old

Very similar HIC15 values (16 and 19) with injury thresholds of 389 and 568 (Mertz et al. 2016)
Objective 3: Communication with Caregivers
“If a child is rear-facing and you get hit from behind, isn’t that the same as a forward-facing child in a frontal crash?”
“If a child is rear-facing and you get hit from behind, isn’t that the same as a forward-facing child in a frontal crash?”

First off—This is a really great question!
“If a child is rear-facing and you get hit from behind, isn’t that the same as a forward-facing child in a frontal crash?”

First off—This is a really great question!

No, it’s not the same:

RF CRS interact with the vehicle seat to absorb crash forces.

FF CRS rely primarily on the five-point harness to restrain the occupant.
Communication with caregivers

Forward-facing in frontal impact
Communication with caregivers

Forward-facing in frontal impact
Communication with caregivers

Forward-facing in frontal impact

Occupant projects out of CRS

CRS is stationary
Communication with caregivers

Forward-facing in frontal impact

- Occupant projects out of CRS
- CRS is stationary
- Torso engages **quickly**, head continues forward.

Frontal impact
Forward-facing in frontal impact

Occupant projects out of CRS

CRS is stationary

Torso engages **quickly**, head continues forward.

Rear-facing in rear impact

CRS interacts with vehicle seat.
Communication with caregivers

Forward-facing in frontal impact

- Occupant projects out of CRS
- CRS is stationary
- Torso engages quickly, head continues forward.

Rear-facing in rear impact

- CRS interacts with vehicle seat.
- Torso engages slowly, head stays aligned.
• Rear-facing CRS have features to mitigate forces in rear impacts
 – This crash mode is different than a forward-facing CRS in a frontal impact.
• These data are insufficient to conclude whether RF or FF is safer in a rear impact scenario.
• Ultimately, these conclusions align with best practice recommendations to keep children rear-facing.
• More results in publication: SAE International 2018
Center vs. outboard seating positions
• How can a CPST help a caregiver choose the best seating position for their child?
 – What is the “best”?
 – Are there other good/better options?
 – What factors should the caregiver consider?
Near side impact
Far side impact
Center seating position keeps occupant away from both doors
• Kallan et al. 2008
 – Children ages 0 to 3 years, 1998-2006
 – Insurance claim records and telephone survey
 – Reported injury corresponding to AIS ≥ 2
- Kallan et al. 2008
 - Children ages 0 to 3 years, 1998-2006
 - Insurance claim records and telephone survey
 - Reported injury corresponding to AIS ≥ 2

- Injury risk (as a percentage of population)
 - Left outboard: 0.27%
 - Center: 0.17%
 - Right outboard: 0.29%

43% lower injury risk than outboard positions
• Kallan et al. 2008
 – Children ages 0 to 3 years, 1998-2006
 – Insurance claim records and telephone survey
 – Reported injury corresponding to AIS ≥ 2

 – Injury risk (as a percentage of population)

<table>
<thead>
<tr>
<th>Position</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left outboard</td>
<td>0.27%</td>
</tr>
<tr>
<td>Center</td>
<td>0.17%</td>
</tr>
<tr>
<td>Right outboard</td>
<td>0.29%</td>
</tr>
</tbody>
</table>

All positions showed <5 injuries per 1,000 children
• Kallan et al. 2008

These data do not indicate the outboard position is a poor choice… but rather, given available space and ability to obtain a tight installation, the center position allows for further reductions in injury risk beyond the already excellent protection afforded by CRSs attached in the outboard positions.

-Kallan et al. 2008

– Injury risk (as a percentage of population)

Left outboard 0.27%
Center 0.17%
Right outboard 0.29%

All positions showed <5 injuries per 1,000 children
• **Supporting literature:**
 – Howard et al. 2004
 • *Near side:* 7 injuries per 1,000 children
 • *Center:* 2 injuries per 1,000 children
 • *Far side:* 1 injury per 1,000 children
• Opposing literature:
 – Lund, 2005
 • Found no significant differences among all rear row positions using police report data
 • 0.12% to 0.14% injury risk across all positions
 – Maltese et al. 2004
 • For older kids (4-15 yo), the center and near side position performed similarly
 • Benefit in far side position only (45% reduction)
Challenges with Center Position

- Center position seat belts can be narrow
- Center position LATCH is often not available
- CRS interference with front row seat
- Difficult for caregivers to reach center, especially in large vehicles
- Two rear seat passengers fit best in outboard positions
Communication with Caregivers

- Slight benefit of center position
- Outboard positions are not inherently bad choices

The safest position is where ever the caregiver can get a good installation and use the CRS correctly during every single ride.
The authors would like to acknowledge the National Science Foundation (NSF) Center for Child Injury Prevention Studies at the Children’s Hospital of Philadelphia (CHOP) and the Ohio State University (OSU) for sponsoring this study and its Industry Advisory Board (IAB) members for their support, valuable input and advice. The views presented are those of the authors and not necessarily the views of CHOP, OSU, the NSF, or the IAB members.

Thank you to the industry mentors from CChIPS, especially: HungJung Kwon, Jason Jenkins, Duey Thomas, Eric Dahle, Steve Krantz, Richard Orr, Travis Miller, Craig Marcusic
Please use the Lifesavers Conference Mobile App to evaluate this presentation.
Thank you!

Contact me: Julie Mansfield
Julie.Mansfield@osumc.edu

Injury Biomechanics Research Center:
www.ibrc.osu.edu

Center for Child Injury Prevention Studies (CChIPS):
www.cchips.research/chop.edu

Buckle Up with Brutus (Caregiver-oriented):
www.buckleup.osu.edu