Cell Phone Filter/Blocker Technology
Field Test

Dillon Funkhouser
University of Michigan Transportation Research Institute

March 15, 2015

Cell Phone Filter/Blocker Technology

- Cell Phone Filter/Blocker background
- Field Study
- State-of-the-Art 2015
Cell Phone Filter/Blocker Technology

- Means of restricting incoming and outgoing communications while a device is in motion
 - Software only approach (GPS)
 - Hardware + Software approach (OBDII + Bluetooth)

- Filtering/blocking can include voice calls, text, and apps/data transmission.

- Overrides generally can be allowed.
 - “White list” numbers
 - Some allow “white list” apps
 - 911 calls

Cell Phone Filter/Blocker Technology

- Some targeted to phone user vs. monitor
 - Manual vs. Auto enable
 - Automated responses to incoming comm.
 - Notification when blocked comm. comes in

- Most provide on-line “dashboard” for monitoring use

- Wide range of pricing
 - Some monthly, some one-time, generally low cost
 - Hardware approaches tend to cost more $$
Cell Phone Filter/Blocker Field Test

- Objective: Examine…
 - Participant behavior
 - Participant acceptance
 - Organizational impacts

…of cell phone filtering/blocking technologies.

Research Collaboration

- VTTI
- UMTRI
 - Jim Sayer, Ph.D.
 - Dillon Funkhouser
- Participant Organization
 - Michigan Department of Transportation (MDOT)
- Technology Providers
 - Illume Software, Inc
 - obdEdge, LLC
Selecting Technology Partners

- Is there a commercial product on the market?
- Can data be collected in the baseline period?
- What is the range of platforms supported?
- Is it a software only solution, or is there hardware too?
- Can data be stored remotely from handset?

Selecting Technology Partners (2011)

- Software only:
 - Izup
 - Guardian Angel
 - PhonEnforcer
 - Text Arrest
 - TxtBlocker
 - PhoneGuard
 - DriveSmart
 - CellSafety
- Hardware/Software:
 - Cell Control
 - DriveAssist
 - ZoomSafer
 - Key2SafeDriving
 - Safe Phones4 U
Procedure

- 9-week experience for each participant
- A-B-A (3-3-3) design
- Data sent remotely to UMTRI
 - No content collected
 - Overrides allowed

Study Sample

- 44 participants in final dataset
- MDOT employees, some with dedicated vehicles

Data Collection

- Time of day, location, speed of handset
- Incoming and outgoing calls (begin and end time)
- Also when:
 - An SMS was sent or received
 - The phone had a web browser displayed
 - The phone had an email application displayed
 - The phone had an app displayed (maps, calculator, etc.)
 - Manual overrides occurred

- Online survey completed at the end of week 6
Results: Driving Exposure

"On average, over the last 6 weeks, how much time did you spend driving as a portion of each 8-hour workday?"

Results: Cell Phone Use Behavior

<table>
<thead>
<tr>
<th>Software Only Application</th>
<th>Monitor 1</th>
<th>Blocking</th>
<th>Monitor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of calls made at zero-speed</td>
<td>72.4%</td>
<td>79.1%</td>
<td>73.2%</td>
</tr>
<tr>
<td>Unanswered incoming calls (non-zero speed)</td>
<td>0.0%</td>
<td>26.5%</td>
<td>1.4%</td>
</tr>
</tbody>
</table>

- About 27% of calls made while moving, down to 21% with app
- All incoming calls answered in baseline, 26.5% of calls blocked during testing, the rest required overrides to answer
Results: Cell Phone Use Behavior

Hardware/Software Application

<table>
<thead>
<tr>
<th></th>
<th>Monitor 1</th>
<th>Blocking</th>
<th>Monitor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of calls made at zero-speed</td>
<td>4.0%</td>
<td>16.0%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Unanswered incoming calls (non-zero speed)</td>
<td>2.5%</td>
<td>50.7%</td>
<td>4.8%</td>
</tr>
</tbody>
</table>

- Most calls made while moving in baseline period. 16% of calls made when stopped during blocking period
- Most incoming calls answered in baseline, 50.7% of calls blocked during testing, the rest required overrides to answer

Results: Cell Phone Use Behavior

- Software-only participants at speed less, often rode as passengers (3/4 of calls placed at zero speed)
- Hardware/Software participants drove often, would always be the driver (less overrides on incoming calls)
- No significant difference in duration of calls between data collection periods
Results: User Acceptance

Participants’ least favorite aspect of the application (counts of open-ended responses):

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Overall</th>
<th>SO</th>
<th>H/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery drain</td>
<td>11</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Incoming calls blocked</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Inconvenient not being able to make call</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>General loss of productivity</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Have to override often, override difficult</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Can't read email while driving</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Had to pull off to call, dangerous</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Post-drive blocking latency</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Results: Gaming of the System

- Optional nature of program removed some incentive to “game” the system
- 2 participants reported providing personal phone numbers to co-workers
- Many “Tamper alerts” and “Violations” reported
 - Likely due to downtime in phone/vehicle use (vacation etc.)
 - Not likely due to “tinkering”
Results: Organizational Costs

- Acquisition and subscription costs of the application and any associated equipment (low)
- Education, training and installation (medium)
- Maintenance and monitoring (likely medium)
- Effects on productivity (medium to high)

Conclusions

- Participants are resistant because of job impacts even if they see the safety benefit
- Even with overrides available (and many performed), use rates while at speed significantly declined during Blocking period
- Productivity losses likely largest cost of implementation
Lessons Learned

- GPS approach has issues with latency
 - Good for sitting in traffic, bad at the end of trips
 - Beholded to GPS reception
 - Extra drain on handset battery
- No distinction whether phone user is actually the driver of the vehicle
- Hardware approach lacks continuous monitoring
 - Ambiguous whether device disabled or just not driving

Considerations for Future Research

- Test hardware/software application with continuous monitoring of phone activity (not just while in vehicle)
- Obtain phone use logs from participants or gain access to phone records for data verification
- Possibly not allow overrides
- Possibly only block SMS/email/applications, not phone use

- **Software only:**
 - Guardian Angel
 - (New features available with Autolog)
 - PhonEnforcer
 - Text Arrest
 - TxtBlocker
 - PhoneGuard
 - CellSafety
 - Now “WebSafety”
 - DriveScribe
 - OneProtect
 - SafeCell
 - Live2Txt
 - Textecution
 - Text-STAR
 - DriveFirst (Sprint)
 - Safely Go (Verizon)
 - DriveSmart (T-mobile)
 - DriveMode (AT&T)
 - DriveOff (Esurance)

- **Hardware/Software:**
 - Cell Control
 - (new features available with DriveID)
 - DriveAssist
 - Key2SafeDriving
 - Safe Phones4 U
 - TextBuster
 - cellSAFE
 - KyrusMobile

- Guardian Angel (Trinity-Noble, LLC)
 - Passenger/Driver detection
 - Autolog employs patch antenna array
 - Skybloc is being developed to jam in-car only (currently illegal in the US)

- CellControl DriveID (obdEdge, LLC)
 - Also employs passenger detection
 - Uses solar power for on-windshield unit

Questions?